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A NONLINEAR ELLIPTIC PROBLEM RELATED TO FLOWING
GRANULAR MATERIALS

PIERRE A. GREMAUD*

Abstract. Similarity solutions for the flow of granular materials are constructed. Unlike pre-
vious work, the present approach can be applied to non-axisymmetric containers. The steady state
equations are reduced to a nonlinear Helmholtz equation on a subdomain of the sphere. Exis-
tence and local uniqueness of the solutions are established. A spectral numerical method using
Fourier/Chebyshev-Gauss-Radau collocation for discretization and Newton-GMRES as solver is pro-
posed and implemented. Corresponding numerical experiments are discussed.
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AMS subject classifications. 65N35, 35J65, ;16T25

1. Introduction. This paper is about the determination of the flow of granular
material under gravity in hoppers of simple geometry. This problem is common to
many industrial processes. In spite of its apparent simplicity, it presents a formidable
array of difficulties. In practice, the withdrawal of stored materials from hoppers and
bins is well known to be problematic. No flow, segregation, flooding (uncontrolled
flow) and structural failures are often encountered [11]. Improved design criteria are
sought through a better understanding of such flows. All the previous contributions
we are aware of [4], [5], [7}-[9], [13]-[17], [20], to cite but a few, deal only with
azisymmetric containers. This significant restriction is removed here.

Apart from the geometry of the hopper, two important factors are the internal
friction of the material and the friction between wall and material. Those parameters
are further discussed in Section 2. The flows themselves can reach from established
mass flows where the material moves and deforms everywhere in a “smooth way” to
highly time-dependent funnel flows where motion only takes place in the central part
of the silo [14]. In the first case, steady state models are often appropriate. Indeed,
current design criteria are based on mass flow calculations through the resolution of
steady state models, a view point that is also taken in this paper. Throughout, the
material is assumed to be an incompressible, perfectly plastic, cohesionless Coulomb
powder with a yield surface of von Mises type. Further, the eigenvectors of the strain
rate and stress tensors are assumed to be parallel. Those assumptions are standard in
this field, although the alignment condition is somewhat controversial. Those issues
are commented on in Section 2. Apart from the above constitutive relations, the
equations derive from the basic principles of Continuum Mechanics: conservation
of mass and momentum. Conservation of energy does not enter the problem as heat
losses through friction influence the temperature which is not related in any significant
way to the variables under study.

Much remains to be done about the analysis of the above problems and as a result,
the design of mass flow hoppers still greatly relies on an observation due to Jenike
8], [9] in the late 1950s. It was noticed that for three dimensional conical hoppers of
circular cross section as well as for two-dimensional wedge shaped hoppers the above
equations admit similarity solutions. Those radial solutions correspond to particle .
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2 P.A. GREMAUD

paths that are radial lines. The similarity is reflected in scalings of the stresses and
velocities with respect to the radial distance r from the vertex of the hopper. In those
simple geometries, the equations for the radial fields reduce to systems of ODEs that
can be easily numerically integrated. The stability of the solutions to perturbations,
change of the geometry (opening angle) and/or physical properties of the hoppers were
studied in [4], [13], [15] and [16] through numerical resolutions of the full PDE system
(in [16], the material is assumed to be compressible) and in [5] and [15] through linear
stability studies. Experimental evidences [14] confirm the important role played by
the radial fields in practice.

The purpose of this paper is to show that Jenike’s construction of similarity so-
lutions can be generalized to general mathematical cones, i.e., pyramidal domains of
arbitrary cross section. This is significant as previous works in this area deal exclu-
sively with axisymmetric containers, even though those are the exception rather than
the rule in practice (see e.g. [18] for remarks on the influence of the hopper geometry
on the flowing properties). The loss of axisymmetry considerably complicates the
structure of the stress tensor and the ensuing equations. As is the case for Jenike’s
radial solutions, the radial structure leads to significant simplifications. However, in-
stead of ODEs, the radial stress field must here be obtained through the resolution of
a nonlinear Helmholtz equation in a subdomain of the sphere.

The paper is organized as follows. The model, geometry and physical assumptions
are discussed in Section 2. An existence and local uniqueness result is stated and
proved in Section 3. In Section 4, a pseudospectral numerical method is proposed.
It uses Fourier collocation in longitude and Chebyshev-Gauss-Radau collocation in
latitude, to account for the boundary conditions at hand. Section 5 is devoted the
_description of several numerical experiments. Conclusions are offered in Section 6.

2. The model. The physical quantities and corresponding equilibrium equations
are expressed in spherical polar coordinates, with the origin corresponding to the
vertex of the hopper. For non-axisymmetric domains, coordinate systems that are
better suited to the geometry at hand can usually be constructed. However, such
systems are typically not orthogonal, complicating greatly the structure of the basic
equations of Continuum Mechanics [1]. To simplify the numerics, such alternate
coordinate systems are introduced in Section 4 through a change of variables, but the
individual components of the stress tensor, velocity, etc..., are still measured in terms
in the original spherical coordinates.

The strain rate tensor V = —%(V'v + VoT), v being the velocity, and the stress
tensor T take respectively the form (see e.g.[19], p.184)!

0, —3 (L0pvr — 2 +8v) =3 (mimpOsvr — 22 + Orvy)
V= . =L (v, + Opuyp) — L (Bpvy — cotBug + 7i50500) |,
: . —-% (vr +cotfuvg + Eirl\_08¢v¢)
Trr TrG Tr¢
T= - Tee Tys
. . Tpe

The equations of equilibrium are

1We omit to write the lower triangular part of symmetric tensors.
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where g is the acceleration vector due gravity, or equivalently

1 1 1
OrTrr + m%Tw + ;BGTTH + ;(2Trr ~ T4y = Too + Trg cot ) = —pgcos®,

1 1 1

3rTr¢ + ;‘—S_in_9—6¢T¢¢ + ;39T¢9 + ;(3Tr¢ + 2T4q cot ) =0,
1

rsind

1 1
O;Trg + 0sTop + ;(%Tgo + - (3T + (Tog — Tyg) cot 8) = pgsin,
where g = | g| and p is the density.
For the plasticity model, the von Mises yield condition is assumed to hold. Ex-
pressed in terms of the principal stresses, o;, i=1,2,3, i.e., the eigenvalues of T, this
condition reads

(2.2) (061 = p)* + (02 —p)* + (03 — p)* = 2p°5°,
where .
1 1 1
b= -3—tI‘T = g(Trr + Tye +T¢¢) = 5(0'1 + 02 +0’3)

is the average stress and s = sind, d being the angle of internal friction.

A flow rule completes the model. The eigenvectors of the strain rate tensor V
and the deviatoric part of the stress tensor T' are assumed to be parallel. This is
the Levy flow rule, which can be equivalently expressed as the existence of a positive
scalar function A > 0 such that

(2.3) V = \T - pI).

The alignment condition of the eigenvectors of T and V in effect neglects the
rotation of a material element during deformation, a controversial assumption. There
is experimental evidence that misalignment may occur under some circumstances.
Alternative models which allow for the above eigenvectors to be somewhat out of
alignment have been proposed, see e.g. [20]. However, to the best of our knowledge,
there does not seem to be enough experimental data to favor one type of models over
the other. We refer to [7] for a lucid, if somewhat dated, account of the situation.
Further, and more importantly, the fact that we look here exclusively at radial flows,
renders the distinction between the two types of model less of an issue. Indeed, simple
explicit calculations show that in the case of radial flows in three dimensional conical
hoppers of circular cross section, for instance, the misalignment predicted by Spencer’s
double shearing model [20] is less than 10° in all cases of physical interest.

The unknowns characterizing the flow are the velocity v and the stress tensor
T, assuming constant density. They are determined by (2.1) which corresponds to
conservation of momentum, the yield condition (2.2) and the above flow rule (2.3).
Note that (2.3) also implies incompressibility, and thus conservation of mass, as

V-v=—trV = Atr(T —pI) = 0.

The type of the system (2.1-2.3), which has to be supplemented with side conditions
discussed below, can be determined. In [17], it was shown that, depending among
other things on the internal friction, the system for fully three-dimensional flows can
be mixed hyperbolic-elliptic, elliptic or have no definite type.
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Following Jenike [8], [9], we seek similarity solutions with radial symmetry. More
precisely, the velocity field is assumed to be purely radial, i.e.

[ur,ve,ve] = [vr,0,0],
while the stress components are of the form
Trr =776, 9),
and similarly for the other stress components. The strain rate tensor simplifies to
-8,y —30pv;  — 5 Opvr _|

V= . —%vr 0 ;
1
. . ~ 1y,

The flow rule (2.3) has several fundamental consequences. First, since again V-v =0,
we obtain

2
arvr + -V, = 0.
r
The proper scaling for the velocity is consequently
1
’Ur(’f', 9a ¢) = —;‘EU(G, ¢):

where we further have

2Tr€ v
Tog—p

(2.4) Bpv =

Finally, (2.3) implies
Too = Too and Top = 0.

The yield condition (2.2) can be expressed in terms of the four stress unknowns 7y,
Tr9, Tre and Tgg by using the invariants of T, see (2.8) below. This results in the
following system of three partial differential equations and one algebraic constraint in
the four remaining stress unknowns 7r;, Trg, Tr¢ and 7gg

1
(2.5) g@ad,w + OgTrg + 37y — 2799 + Trg cOt @ = —pgcos b,
1
(2.6) 'S‘i‘ﬁ—e'aw’oe +4714 =0,
(2.7) Og799 + 4770 = pgsinb,
1
(2.8) (Trr — Tog)? + 3775 + 3Tr2¢ = g(TM + 2799)% 52,

The yield condition (2.8) deserves further comments. It can be written

2 2
T, 1-£ 0 -1-%
T 3 3
TTAT:: —3T3¢, with T = Tro ) A= 0 3 0
Tg9 _1-2 g 1-42

3 3
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Fi1G. 2.1. Two representative level surfaces corresponding to the yield condition. In each case,
only the physically relevant nappe is showed.

| The symmetric matrix A can be diagonalized

A1
A=XAXT, with A = A2 , X=| 2 |22 |23 |,
A3
where
AM=3 A —1—§f—2-:}: 1+:1-s2+(is—2—)2
1 =9 2,3_ 6 3 6 )

T 1 (382 1 T
T = [0,1,0] , X3 = [—3—-_}—_—2;-5 (—2— + -2-\/36 + 4882 + 2584) ,0, 1] .

As is easily seen from those expressilgns, A1 and Ay are positive for any § > 0, while
Az is negative. Let & = [ &En ¢ ] = XTT; the yield condition takes the form

(2.9) ETAE =36% + Aom® + A3(® = =377,

which corresponds to a family of hyperboloids of two sheets parametrized by |74/,
see Figure 2.1. The case 7,4 = 0 is a cone. Only one of the two sheets is physically
relevant. Indeed, granular materials can only support compressive stresses, i.e., o; >
0, i = 1,2,3. This condition is satisfied on only one of the sheets, provided § < 60°.
The corresponding result given below can be found in [17] where it is stated and
proved using exclusively the properties of the principal stresses (i.e., (2.2) instead of
(2.8)).

LEMMA 2.1. For any value of 74, the hyperboloid of two sheets (2.8) has one
sheet corresponding to compressive stresses, o; > 0, i = 1,2,3, if and only if the
internal angle of friction satisfies 0° < § < 60°.
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Proof. As a direct consequence of the structure of the scaled stress tensor 7 =
Trr Tro Tré
70 Tog O , it can be seen that the principal stresses are
Tr¢ 0 Too

(2.10) g1 = Tgo,
T + Trr

(2.11) G23 = — + \/(Tog - T )2 + 4Tr20 + 47‘3¢,

without assuming any ordering of the &;’s. The component 7y, has thus to be positive.
Further, we have

. 2 2 Jup
det T = 7po(TrrTo0 = Tog — Try) = 010203,
and thus
2 2 _ s =~
(2.12) TrrT00 — Trg — Trp = 0203,

Therefore, 6, and &3 only have the same sign if 7, > 0. Solving for 7, directly
from the yield condition (2.8) shows that 7., > 0 for positive values of 7yy provided
252 — 3v/3s + 3 > 0, see (2.13) below. Since s = sin §, it is equivalent to § < 60°.

Combining (2.8) with (2.11), we observe that the remaining &, and 63 are positive
if

s? 4s? 4s?

(3‘ - )75 + (T — )7 + (—} + 2)TrrToo < 3TrrToe,
which is clearly satisfied if again § < 60°. O

At this point, the system (2.5-2.8) can be rewritten in several ways. One could for
instance introduce a la Sokolovskii variables [14] which would essentially correspond
to solving (2.9) by replacing £ and 7 by one new variable

£= —\/i(Aac‘z +372)sin2, 7= \/_—I(Aacz +372,) cos 29,
3 T ) )\2 ro

Note that the above expressions make sense because of the yield condition (2.9) and
the fact that A2 > 0. The approach would lead to an elliptic system of three fully
nonlinear first order equations in the variables ¢, ¥ and 7,4. We choose rather to
work with the original scaled variables after having solved (2.8) for 7.,

Trr = f(Tro, Trg, Too)

1
(213) =5 ((3 +25%) 700 £ 3, [35773, — (3 — $2)7, — (3 - 52)72,)

3 -

As can obviously be seen from both the above expression and Figure 2.1, for any triple
(7+8,Trp, Tog), ONe can have zero, one or two corresponding values of 7. The zero
solution case, i.e.
2 < 2 (72, + 72,)
06 352 rd re/y
corresponds, by assumption here, to stress states incompatible with the physical prop-
erties of the material under consideration.
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The two solutions in (2.13) are related to the so-called active (+ sign) and passive
(- sign) states of the flowing material, see e.g. [14]. As the passive state is the one
that tends to be observed experimentally upon discharge of the hopper, we adopt, to
fix the ideas, 7. = f_(7r9,7r¢,790). However, the analysis presented below applies
equally to both cases. ‘

The unknowns 7,4 and 79 can be eliminated from the system by using (2.6) and
(2.7). Relation (2.5) becomes

1 .
_'sin2 63¢¢T99 - m—ag (sm 9397’99) + 127, — 8799 = —6pg coséb.

One recognizes the above differential operator — 48,4 - — i 069 (sinBdg-) = —A as
Laplace’s operator on the sphere. The system is closed by expressing 7, as a function
of 799 and its first derivatives through (2.6), (2.7) and (2.13), leading to

(2.14) —~ATgg + X190 = —6pg cos bl + F(@, Tog, OoTo0, 8¢T09),

where x = 43+83 and

9
F(0, 700, 90700, O00) = 33 \/48327929 -(3-5?%) (( gsin@ — Dy74e)? + (af:g)) )

The above nonlinear Helmholtz equation (2.14) has to be solved in the domain
2w corresponding to the intersection of the unit sphere centered at the vertex of
the hopper with the hopper itself. Whenever possible, symmetry properties are taken
into account. The resulting computational domain € is a “spherical triangle”, with
two edges corresponding to arcs of great circles and a third one corresponding to the
outer boundary, see Figure 2.2 in the case of a domain with rectangular cross section.
The boundary 99 of 2 consists of the four parts -

0N =TouUl UTyUT;,

where T'g is the trivial boundary {(0,¢);0 =0} and 'y 3 = {(6,¢);0 < 8 < 0y, ¢ =
F¢w}, with 6, > 0 and ¢, > 0. The boundary I'; is represented as the graph of an
even function C of class C!, 8, = C(%¢y,)

I = {(9)45)79 = C(¢)1 —¢w < ¢ < d’w}
The domain € in which the problem is to be solved is thus
Q= {(6,9); ~dw < ¢ < ¢u,0 <8 < C(4)},

see Figure 2.2.
The boundary conditions are derived from physical considerations. On I'; and
I'3, we impose

(2.15) 700 (", ~Pw) = Too (s duw)s  OpToo(*s —bw) = OpTos (-, duw) = 0.
Indeed, by symmetry, it is clear that one should have

T96("s —Buw) = Toa (", dw),  OpToo (s —Buw) = —0y790(-, Pu).
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Q o,
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6=C©

FIG. 2.2. Geometry of the computational domain.

Further, by a formal regularity argument, one obtains that 474 vanishes on I'; and
I's. Indeed, if one solves the problem in §2¢,y instead of 2 and freezes the coefficients
in the nonlinear part F of (2.14), classical regularity results apply, see [6] §3.2 and
Remark 3.2.4.6. This yields H2-regularity of the solutions. For such a solution u, one
has on each ¢ = cst line ['y

5y 8¢u+ =y0su”,

where u¥ correspond to the values from each side of I'y and the mapping v : H2(Qguu) —

H'/%(T'4) which takes u to y9yu is the normal trace operator, see [6], Lemma 1.5.1.8.
The condition 8479e(E ) = 0 has also been verified numerically by varying the

domain of resolution (for instance, by rotating it by 7/4 in case of a square domain).
On T'g, the law of sliding friction applies, i.e.

|TT| =l‘wTN, on I'y,

where Tr and T are the scaled tangential and normal stresses on the hopper wall,
and p,, is the coefficient of wall friction. Since the outer unit normal to the wall is

v = [0,sin8,—C'(9)]

\/sin? 6 + C'(¢)? ,

Ty =199 and Tr = [NoTrg + N¢T,—¢,0,O]T.

it follows that

The boundary condition on I'; then reads by (2.6), (2.7)

pgsin® C(¢) — sin C(4)see + s—if—l%awgo =

(2.16) —4 [ty \/sin2 C(@) + C'(¢)%790,

which is essentially a Robin boundary condition.
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3. Mathematical analysis. The above problem presents several nonstandard
features and difficulties (Laplace-Beltrami operator, Robin boundary condition, non
Lipschitz coefficients, restricted range of admissible values). In this section, an exis-
tence and local uniqueness result is established.

We equip L*(2) with the inner product (u,v) = ffgw foc(¢) uv sin 0 dfde. Let
V = {ve Q) Vv = v, 0] € LA,
u(, ~¢w) = u(-, ¢y) in the sense of the trace}.
The space V is equipped with inner product and norm
(wv)v = (w,v) + (Ve, Vo),  |lully = /(u,u)v.

Formally, if u stands for a classical solution to problem (2.14) and if v € V, we
obtain after integration by parts and use of the boundary conditions (2.15) and (2.16)

dw pC(d)
_//Aw dw:/ Vu - Vv sin 6 dodg
_¢I.u v}
Q

bw
= [ (40 + 07 u0)0)+ posin (@) oic(6), ) s

Let a: V x V — R be the bilinear form defined by

¢w  pC(8)
a(u,v) = / / {Vu - Vv + xuv} sin @ dfd¢
_¢w 0

Sw
~ s [ ,_ Voin? Cl) + (0P u(C(e), )0(C(6),6) o,

For Ty, i.e., C of class C', it is well known that the trace operator v : V — H/2(T,)
is linear and continuous [6], Th. 1.5.1.3, p.38. Consequently, the forma:V xV — R
is continuous. Further, under a condition that links wall friction, internal friction and
the geometry of the domain (a precise condition is given as part of the proof of the
next result), the bilinear form a(-, ') is V-elliptic.

PROPOSITION 3.1. The bilinear form a(-,-) is V-elliptic, provided T is a curve
of class C* and p, is sufficiently small.

Proof. Let eg = [1, 0] and h(¢) = \/sin2 C(¢) + C'(¢)?; we have

//h(d)) V(u?) - egdw = 2//h(¢)u89u dw.
Q Q

On the other hand, the divergence theorem leads to

//h(¢)V(u2) e dw = —//U.ZV - (h(6) eg)dw+/h(¢)uzeg Ndo
Q Q an

= /h(qb) uZeg -Ndcr,
T2
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where IV stands again for the unit outer normal and where we have used (2.15). On
Iz, we observe that

h(@)eo- N = /sin?C(¢) +C'(@) es- N =sinC(@), & € [~bu, du),

and thus

/ h(6) ules - Ndo > —— S 0min - / h(¢) u? do,
Cl

. 2
Sin® Omaz + CL, I

where 07 (maz) = Milge[—p,,6,)(Max)C(4) and Cf, = maxye(-g, ¢.]C'(#) |. Com-
bining the last three expressions and using do = sin8d¢ yields, for any n > 0

Gu \/sm Omaz +C
//|h | u] |0gu| dw

| mowco i

_¢w

sin 0ma1+C’ 2
sin? Omin

(Gl + nlorulio ).
From the definition of a(-, ), sufficient conditions of V-ellipticity are then found to be

B 441y, Sin% Oppog + c;o'z 50 1 -4y nsin2 Omaz + C{,oz >0
w b)

n Sil’l2 Gm,-n Sil’l2 Gmin
for some n > 0. A sufficient condition is then for instance
s 2 ;2\ 2
Sin“ Omaz +C
sin” O,in

O
We can now state a weak formulation of our problem: Find a function « € V such

that
Gw
a(u,v) = //F(u)v dw — Gpg// cos Bv dw + pg/ sin? C(¢)v(C(9), ¢) do,
G o Puw
for any v € V and where, with a slight abuse of notation, F still denotes the nonlinear
function (2.14). We define A € L(V,V*) and & € V* by respectively
< Au,v > = alu,v), Yu,v €V,

duw
<dv>= —6pg// cos Bv dw +pg/ sin® C(¢)u(C(¢),¢)d¢p, Vv eV,
o —dw

where < -,- > denotes the V, V*-duality product. Identifying in the obvious way F(u)
with an element of V*, the problem becomes: Find u € V' such that

(3.1) Au = F(u) + ®.
Let us denote by G : V — V* the mapping
G(u) = Au — F(u),
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and let ug = —pgcosf € V. Note that G ('L:o) € V* is well defined as F'(up) is itself
well defined by construction, provided 8,4, < 7/2. Direct calculations show

L(V,V*) 5 DG(u) = A — DF(u),

where
48s2uh — (3 — 52 inf — 9sudeh
< DF(w)h,v >= 9 // s uh — 8= Sl-(pgsind — ywsh + Fri] 4,

9 )2
48s%u? — (3 — s2)[(pgsin @ — Bpu)? + (size) ]

for any h,v e V.

PROPOSITION 3.2. Under the assumptions of Proposition 8.1, there are neighbor-
hoods U C V and U* C V* of uo and G(ug) respectively such that for each ® € U*,
the functional equation (8.1) has one and only one solution in U.

Proof. From the previous expression and the Inverse Mapping Theorem, G is a
C'-diffeomorphism between a neighborhood of ug in V and one of G(ug) in V*. The
proposition follows. O

Arguments following the lines of the formal remarks at the end of §3 could be
used to obtain H?()-regularity of the solutions. We do not pursue this issue further
here.

4. Numerical analysis. In order to simplify the numerics, the problem is
mapped onto a rectangular computational domain. From now on, the function C
which describes I'y is assumed to be of class C2. We define the new coordinates

=0, and & = ¢.

]
C(#)
Note that {r,©,®} is not an orthogonal coordinate system. Keeping in mind that

6 = ©C(¢4)/0w, the problem for the transformed unknown U(©,®) = u(f,¢) takes
the form

C'(®) 1 2 .
—0s0U + 207 (3 BoaU — Z;W (@2(:"(‘1))2 +4, sin? 0) OeeU
0 .. _aci(@y? _ 16,sin20 -
+(Cz(@){0( )C(®) — 2C'(8)? AION )69U+xsm U
(41) = —6pgcosfsin®d + F(0,9,U,06U,06U),  (0,8) € (0,0) X (~uw, du),
where

9 sinf
3_g

0. sind OC'(®)

F= \/48 25in? QU2 — (3 — s2) ([pg sin?§ — 2 —— <@ 00U)? + [0 U — ) OoUJ? )

The boundary condition on I'; becomes

C'(®) C'(®)
(“”‘” (@)

pgsin® C(®) —sinC(P) = O

c@ " " Snc(e) 0o + 6(1,) U=

(4.2) —4py \[Sin?C() + CIB)?U, B € (~pu) bu).

The above problem is discretized by collocation; Chebyshev collocation at the
Chebyshev-Gauss-Radau points in used in ©, while Fourier-cosine collocation at the
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Fourier collocation points is used in ®. More precisely, we set

N-1 M/2-1

(4.3) UNM @ CI) Z Z Unmw 1m(4<b+1r

n=0 m=—~M/2

where {1,[1n n—o are the Lagrange interpolation polynomials at the Chebyshev-Gauss-
Radau nodes on [0, 6,), i.e.

(4.4) 0, =

w 2] .
—2—(1+cos(2N_1)>, j=0,...,N-1.

This choice, as opposed to the more standard Chebyshev-Gauss-Lobatto collocation,
see e.g. [2], §2.4, results from the nature of the boundary condition along © = 6,,.
For completeness, we derive the expression of the collocation derivative below (which
we have not been able to find in the literature).

LEMMA 4.1. The Lagrange interpolation polynomials on the Chebyshev-Gauss-
Radau nodes (4.4) are given by

16,-0 20 1, (20 ,
’l/)_,(@) c]@ @ (NTN<9w 1>+N__ITN—1 (E—1)>; .7—0,---7N_1,

where

CO=1—2N,
by 2rNj 2m(N — 1)5 .
cj_—2®j (Ncos2N_1+(N 1) cos AN 1 , j=1...,N-1,

where T (z) = cos(N arccosz), |z| < 1, is the Chebyshev polynomial of degree N.

The above result can easily be verified through the use of 'Hospital’s rule and
elementary properties of the Chebyshev polynomials. Interpolation at the nodes (4.4)
of a function u of © defined in [0,6,,] simplify takes the form

2

-1

Inu(©) = ) u(©;)¥;(0).

.
11
o

By definition, the Chebyshev collocation derivative of u at those nodes is then

N-1 N-1
(Inu)'(01) = D w(©;)¢}(8) = ) Diyu(6;)
=0 =0

with Dy = ¥(©;). The collocation derivative at the nodes can then be obtained
through matrlx multiplication. Elementary albeit tedious calculations lead to the
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.
o

following expressions

((ZANWN -1), ifl=j=
Colgwsm—z%—,—(Ncos 2211\‘,’"11 + (N - 1) cos ng—llﬂ) ifj=0,
' l=1,...,N -1,
Dy = ¢ %e,ie,. ifj=1,...,N-1,
| | GALI=0,... ,N=1,
30.,-20; _ g, '
4é Y —oTcile'——e,le_S(N sm(Narccos( = - 1))+
(N —1)%sin((N - 1) arccos( - 1))) 1f] =l=1,...,N-1.

In the @ direction, the collocation points are taken as the usual Fourier collocation
nodes, i.e., .

2!
(4.5) <I)1=¢M(M—1), [=0,...,M 1.
Let U be the N x M matrix of coefficients Upm, n =0,...,N -1, m =0,...,M/2-
1,-M/2,...,-1 and let W be the M x M Fourier matrix
1 1 1 R |
1wy Wl s witt
W=|1 i i wA,(,M 2

where wy = €2™/M s the primitive M-th root of unity. Further, if £ is the M x M
diagonal matrix with diagonal [0,...,M/2 —1,-M/2,...,~1], then for any j,1, ji=
0,...,N=-1,1=0,...,M — 1, the nodal values of Unps and its derivatives can be
expressed as follows

5@q>UNM @j,‘I’[ =43 (DUL:W)][,
80eUnwm (05, 81) = (D*UW);.

Unm(©;, %) = UW) 1,
(9q>UNM(@j, ‘I’z) =43 (UCW)gz,
6¢¢UNM(@,-,@,) = -16 (Uf, W)Jz,
9eUnm(0;, &) = (DUW)j,
( )
(

The N x M matrix of unknown coefficients ¢ clearly satisfies a matrix equation
of the type

AUB; + .. .A,,L{B,, = F(U),

where the A;’s are N X N matrices while the B;’s are M x M. The above system
is obtained by enforcing the conditions that first, the discrete solution Unps from
(4.3) satisfies the PDE (4.1) at the collocation points {(©;,%,)}, j = 1,...,N — 1,
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[=0,...,M -1 and second, that the boundary condition (4.2) is‘veriﬁed at the nodes
{©0,®:)},1=0,...,M — 1. Note that no side conditions of any form are imposed in
the neighborhood at © = 0. We denote by A® B the NM x N M matrix corresponding
to the Kronecker product of an N x N matrix A by an M x M matrix B. Further, for
any matrix A, vec(A) denotes the vector formed by stacking the columns of A. One
can check [12], p.410

vec(AUB) = (BT ® A) vec(d).

A direct consequence of this elementary relation is that the above matrix equation
can be rewritten

(4.6) Hvec(U) = vec(F(U)),

where H = Z§:1(B_;r ® A;) is a non sparse NM x NM-matrix.

The above nonlinear system is numerically solved as follows. First, the matrix
H is factorized into H = LV, where V is an upper triangular matrix and L is a
“psychologically” lower triangular matrix (LU factorization). Then, the nonlinear
equation '

vec(U) = VL vec(F(U)),
is solved by a Newton-GMRES solver [10].

5. Numerical results. The numerical approach is tested by comparing with an
exact solution obtained for a simplified linear problem in a domain correspondmg to
a circular cone. More precisely, we consider the following problem

(5.1) —Si—rll-e—(sinBU’(H))' +xu=F for 0 < 6 < 8,
(5.2) u'(0) =0 u'(0n) = pgsinb, + dp,u(y),

where F is taken as constant. The above equation and boundary conditions of this
model problem corresponds exactly to (4.1, 4.2) whith a very simplified right-hand
side.

The change of variable v(z) = u(#) with z = cosf leads to

(1 -2 (2)) + v(v + Du(z) = —F,
where v(v+1) = —x. A fundamental system of solution to the homogeneous equation

(1= 2%)0'(2)) + v(v + o(z) = 0,

is provided by the Legendre functions P,(z) and Q,(z) of the first and second kind
respectively, see e.g. [3], §8.82, 8.83. The coefficient v defined by v(v +1) = —x
satisfies

1

3—52
We can thus get the solution in terms of P—%-HA( z) and Q_%_H,\(z) which are conical
functions, see [3], §8.84. The general solution to (5.1) is then

(5.3) w(f) = AP_y;5(cos 0) + BQ_11ix(cosO) + F/x,

where A = /X — § is a real parameter as, obviously, x = 43857 > 4 for any material.
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n
°

N=M 8 10 12 14
error | 7.061 (-8) | 1.723 (-10) | 3.567 (-13) | 5.995 (-15)

: TABLE 5.1
Mazimum norm of the error for the model problem (5.1), (5.2).

where the last term is a particular solution to the considered problem. Since for real
6, Q_ Lyir (9) is always imaginary while P_ Lyix I always real, we get B = 0. After
noticing that u'(0) = 0, the value of A can be found from (5.2)

A= pgsinby, + 4, F/x
P'(6w) = 4pwp(0u) ’

Our numerical solver is now applied to the present model problem (5.1), (5.2).
The corresponding numerical solutions are compared to the exact solution (5.3). The
results are summarized in Table 5.1, where the maximum norm of the error is given
as a function of the number of nodes, taken here as N = M. This illustrates two
facts. First, as expected, the method is found to be spectrally accurate. Second, for
this simple problem, a mesh as small as 14 x 14 leads to errors of the order of the
round-off errors.

The standard fully axisymmetric case of a circular cone for the full problem
provides an additional way of testing the approach, this time in the nonlinear regime.
Again, axisymmetry considerably simplifies the problem. Since no variable depends
on ¢ in that case, a direct consequence of the flow rule (2.3) is that the (scaled) stress
tensor T' reduces to

where p(f) = P_1,ix(cos0).

~ Trr Trg 0O
T=1| 179 198 O
Q 0 T00

Further, the yield condition (2.8) reduces, in (7., 79, Teg)-space, to the cone illus-
trated in Figure 2.1 (T} = 0), as opposed to the family of hyperboloids discussed in
§2. This cone can be parametrized by the Sokolovskii variables (o,1)) where o is the
average stress and 1 is a new variable, as follows [9], [14], [17]

2 1
Trr = 0(1 — —=5c082¢), 79 = —08sin 29, 799 = (1 + —=s cos 2¢)).
T ( \/g ¢) 9 ’d/' 06 ( \/5 11[))

The above parametrization “solves” the yield condition. The remaining unknowns
(0,%) are determined by solving the equations of equilibrium (2.1), which now only
yield two ordinary differential equations. The corresponding boundary value problem
can easily be solved numerically. We omit the details, see, e.g., [5]. A comparison in
terms of the average stress o between results from the ODE code using the Sokolovskii
variables on the one hand, and results from the present approach on the other hand,
is illustrated in Figure 5.1. The agreement is excellent (relative error < .02%).

Having gained some confidence in the approach, we now apply it to the general
full problem. Results are presented for the following kind of hoppers. For 0 < A < 1,
we consider the following family of domains

tan 6, cos ¢,
cos ¢

C(¢) = (1 = N8y + A arctan( ),
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FiG. 5.1. Comparison between ODE solver (solid curve) and present spectral PDE solver (o)
for a circular (azisymmetric) cone; 8y, = 30°, § = 30°, py = tan(15°), N = M = 20.

corresponding to
e conical hopper with circular cross-section A = 0,
e pyramidal hopper with transitional cross-section 0 < A < 1,
e pyramidal hopper with square cross-section A =1,

In each case treated below, ¢, = 7/4 and ,, is a free parameter, both angles being
defined in Figure 2.2.

The results presented below are meant to illustrate the gualitative effects of the
geometry of the hopper on the flows. All results are represented on horizontal cross-
sections taken at the same vertical height. This requires appropriate scaling according
to the principle outlined in §2 (stress = O(r), velocity = O(r~%)). Unlike the stress,
the velocity field, which is computed from (2.4), is only defined up to a scalar multiple.
This indeterminacy can be solved by imposing an outflow rate for instance. Inciden-
tally, in practice, the flow through outlets at the bottom of the hopper is almost
always imposed, through some kind of feeder device for instance. Here, the velocity
fields are normalized to have maximum value 1. In Figure 5.2, a comparison between
a circular conical hopper, a transitional hopper A = 1/2 and a square pyramidal one
with “same” opening angle is offered. By same angle, we mean that at a given com-
mon height, the geometric domains corresponding to horizontal cross-sections admit
inscribed circles of equal diameter. The material constants are chosen as § = 40° and
oy = tan(20°).

All calculations were done on a quarter domain (the solid diagonal line appearing
in all figures is an artifact of the plotting software). Several observations can be drawn
from the above experiment. First, flows in pyramidal hoppers seem to exhibit larger
stresses than flows in purely conical containers. To derive more precise practical con-
clusions, arguments related to the volume of material effectively contained would have
to be considered. Second, and somewhat surprisingly, the presence of corners seems to
have relatively little effect on the velocity flow. Comparisons with both laboratory ex-
periments and different plasticity models would be extremely interesting. In the usual
axisymmetric case, the latter kind of comparison can be easily performed. Models
based on a Tresca yield condition for instance, rather than the present von Mises con-
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average stress

velocity

-05 -04 -03 -02 -0t L] | 02 03 04 05

o5 04 03 02 01 0 01 02 03

average stress velocity

-05 04 -03 02 -01 ¢ 01 02 03 04 05 -05 -04 -03 -02 -01 0 01 02 03 04 05
velocity

-05 -04 -03 -02 -01 0 01 02 03 04 0§

Fi1c. 5.2. Horizontal cross-sections of flows in similar hoppers (see text) of various shapes;
geone = 30.68°, 95/ % = 35.01°, BEF"O™¢ = 40°, § = 40°, pyy = tan(20°), N = M = 20.

dition, tend to predict flows that are more sensitive to wall friction, i.e. the material
does not flow as well near the wall, [5], [13], [14].2 Unfortunately, how to generalize
Tresca’s yield condition to non-axisymmetric flows is not entirely straightforward, as
one looses the type of symmetry properties that are precisely used to close the system

21t is also interesting to note that in that case, the steady state equations are always hyperbolic.
In depth numerical calculations under a Tresca yield condition can be found in [4], [13].
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in the usual case; see [17], p.29, for further comments. Accurate flow measurements
(stress and velocity) do not seem to be available at this time. The many practical
difficulties related to precise experiments have in fact been at the origin of much of
the analytical work in this field.

6. Conclusions. We have shown how to generalize to non-axisymmetric con-
tainers the notion of similarity solutions introduced by Jenike [8] in the case of purely
conical (or wedge) containers. This generalization comes at the price of having to solve
a nonlinear Helmholtz equation on a part of the sphere, as opposed to a boundary
problem for a simple system of ODEs in the previous cases.

The present approach applies to general “conical” domains, in the mathematical
sense, i.e., any domain invariant under the transformation (r, 8, ¢) — (cr, 8, ¢), where
¢ > 0. It is acknowledged that, clearly, not all industrial hoppers satisfy this property.
However, failing this, no similarity solutions are expected to exist, and the full three-
dimensional equilibrium equations (2.1) would have to be solved.

Acknowledgments. The author thanks Tim Kelley, Matt Matthews, Tony Royal,
David Schaeffer and Michael Shearer for many helpful discussions.
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